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Abstract—The problem of a double cantilever beam adhesive joint is reconsidered under the assumption of
cohesive fracture within the adhesive bond layer. After properly accounting for the adhesive layer, the
problem is reduced to a Fredholm integral equation of the second kind for the bond line traction. Numerical
results for the bond line stress distribution and the crack tip stress intensity factor are presented for several
combinations of the governing material and geometrical parameters.

1. INTRODUCTION

In one of the first fracture studies in adhesive mechanics, Mostovoy and Patrick[1] successfully
measured the strain energy release rate §.. Using a tapered double cantilever beam for their
adhesive-adherend system they measured the energy required to create new surface for a
cohesive crack propagating in the adhesive layer in opening mode.

In conducting analytical or numerical stress analyses of adhesive joints it is common to
neglect the role or presence of the bonding layer. Justification for this is usually based on the
“thinness” of the adhesive as compared to the local adherend thickness. While such results are
useful in indicating loading and geometry effects, the resulting crack tip stress intensity factors
can be quite misleading. The actual fracture takes place by the separation of adhesive material
(cohesive failure) and so it is necessary to determine the stress intensity factor accounting for the
local effects in the neighborhood of the crack.

Of course if one calculates or experimentally measures the strain energy release rate for an
adhesive-adherend system and then determines %. the answer is correct. However, this result is
only valid for that particular adhesive-adherend combination. Should the same adhesive be used
with a different adherend material the joint properties would have to be re-evaluated. Thus, the
knowledge of the strain energy release rate of an adhesive-adherend system supplies no
information about the fracture properties of the adhesive itself.

It is desirable to know the fracture properties of the adhesive alone as they will characterize
the strength of the joint for all possible selections of adherend materials. To complete such a
characterization one requires knowledge of the crack tip stress intensity factors within the
adhesive layer where the role of the layer thickness and mechanical properties of the adhesive
have been properly accounted for. It is a purpose of this paper to present the results of such an
analysis for a double cantilever adhesive joint.

Theoretical analysis and numerical results have been presented in [2] for a double cantilever
beam disregarding the presence of the adhesive layer. The analysis presented herein is similar to
that employed in [2] except for the incorporation of the bonding layer as a two dimensional elastic
continuum and the use of a two variable expansion procedure to expedite evaluation of certain
integrals.

The effects of the ratio of Young’s modulus of adherend to that of adhesive and of the
adhesive thickness to that of adherend on bond stress distribution and stress intensity factor are
presented graphically. It is found that the influence of the ratio of Young’s moduli is more
pronounced than that of the thickness ratio. Numerical results indicate that joint strength
improves with the increase of adherend Young’s modulus and with the decrease of adherend
thickness. These results are in agreement with previous experimental observation(3). It is
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observed that the stress intensity factor increases linearly with [ (the distance from the crack
edge to the point of load application) if / is larger than 3h, h being the adherend thickness. We
therefore introduce a dimensionless asymptotic approximation for the stress intensity factor as a
linear function of I/h. The constants in this linear form depend only on the thickness ratio and
upon the ratio of Young’s moduli if the bond length is larger than 3h. These constants are
presented graphically for a wide range of these ratios.

2. FORMULATION OF THE PROBLEM. REDUCTION TO A FREDHOLM INTEGRAL EQUATION

The actual problem to be modeled, Fig. 1(a), consists of two adherends bonded together along
a finite line segment by a thin layer of adhesive material. The connection is loaded by a pair of
equal and opposite loads tending to separate or cleave the connection along the adhesive line. We
wish to calculate the stress distribution in the adhesive layer in order to estimate the maximum
load P that may be applied to the adhesive joint.
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Fig. 1. The actual and idealized configurations of the double cantilever beam.

To facilitate the analysis, let the upper and lower adherends be infinite in extent, each having a
plate thickness h — h,. The adhesive layer is also taken to be infinite in extent having a uniform
thickness 2h,. Both adherends and adhesive layer are assumed to be composed of isotropic,
homogeneous and linearly elastic materials with Young’s modulus E, and Poisson’s ratio v,
(y =1, 2) where subscripts 1, 2 are for the adhesive and adherends respectively.

As shown in Fig. 1(b), the adhesive layer is perfectly bonded to the two adherends while the
midplane of the adhesive layer is separated by a traction free crack except for a connection
distance a.

A rectangular cartesian coordinate system is introduced with the x,, x; plane lying in the
middle of adhesive layer and in such a way that the connection corresponds to the region
—a <x1<0,—®<x3;<», The loading consists of two concentrated line loads applied to the faces
of the cracked adhesive surface at points x; =1/ and x,=0=.

Because of the symmetry of the problem, we need only to consider the stress and
displacement fields in the upper half (x,=0) of the joint. The solution for the stress and
displacement fields is to be obtained within the scope of two dimensional classical elastostatics
for a state of plane strain.

Denote the displacements and stresses in the upper half of the adhesive layer by u.'”, 74,
while u.” and 752 are those in the upper adherend (a, 8 = 1,2). Then the boundary and bond
conditions become

(X1, k) =0, TP, 00=0 (—0<x, <w), (1a)
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59(x1,0)=—P8(x,—I) (—o<x;<—a,0<x,<®), (1b)
usi(x,0) =0 (-a<x<0), (Ic)

where § is the Dirac delta function and o is the slope of the bond line relative to that of the edge
as x -, The continuity conditions at x, = h, are

79X, ) = 7300, ), } 2
U, ) = udi(xn, ) (—0<x, <)
To these conditions we have to add the regularity requirements
1%, x2) = 0(1)  as x| (y=1,2). ©)
The only unknown stress on the boundary of the upper half of the adhesive joint is
520,00 =p(x) (—a<x,<0). @

In view of the overall equilibrium requirements for the upper half of the joint p(x) must satisfy
the constraint conditions:

jo p(x}dx—P =0, f xp(x)dx —1IP =0. (&)

To expedite the derivation of the solution to the problem just formulated we introduce a
singular field (Green’s function) with displacement . and stress 7.g. This singular field is the
solution to the elastostatic problem characterized by the boundary conditions (1a,b) with P, I, a
replaced by 1, 0, 0, and the continuity conditions (2). In addition the following regularity
requirements must be enforced:

125:2!)()61, x2)=0(e™™) as x, >, ©
(1, x) =0(x[)  asxi>-x(y=1,2)

where ¢ and k are positive constants.

In contrast to the original problem, this singular solution is obtained by the routine application
of exponential Fourier transforms and yields real integral representations for i, and ..

A key item in the formulation of the main problem is i5'} along the lower edge. This quantity is

determined to be

ﬁﬁf%(x1,0)=—%—)[xﬂl+F(%‘)] (—o<x, <), %)
where
F(§)= - i+ 8 = Fyld), ~
k(2 M1 k6
¢,=1 {5 26[1_1,1 L 1)]},
€= %‘[1 = 3(k - 1)e], ( @®
Fu®= [ {4 - sin @) - %0 -3k - el as
and ‘

_E(1-v?)

_h
e—i’ k_Ez(l_Vlz). (9)
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At this point we recall that the entire dependence of the stress field on the material constants
for the type of composite material considered herein can be expressed[2] in terms of two
composite parameters, o, and By

kx(1=v2)=(1—-w) _ke(1-21) - (120

S (=)t =w) P =y 2= (10)
where
k,=-1t» E
* M2 1+V1 Ez
In fact, the constants ¢, and k in (8) can be written as
ke { g fax—Bx 3 ]}
ci=3mk {5 25[ P +5(k DI, an
p=1tas
l—a*

The function A,(s) that appears in the last of (8) results from the solution of four algebraic
equations arising from the interface conditions. Expressions for A(s) suitable for efficient
numerical evaluation for small, intermediate and the large values of s are presented in the
Appendix together with a brief explanation of their derwatlon These expressions depend on
material constants through the parameters a* and B in (10)

If p(x) is known, displacements gradients and stresses in the joint can be evaluated through
the use of superposition as follows

U, x2) = PUSI(x — 1, x2) — p(s)u‘*’(x,—s x2) ds,
(y=1,2) (12
0
o8 (X1, X2) = P7ag(xi — |, x3) — p(s)°f,*.3(x.—s x2) ds.

Now note that the bond condition, the last of (1), yields a singular integral equation for p(x)
by use of the first of (12). This singular equation, in turn, is reduced to a regular Fredholm integrai
equation upon employing Muskhelishvili’s technique. The two unknown constants appearing in
this process are determined upon enforcing the equilibrium conditions (5). Since the procedure is
exactly the same as that employed in [2], we record here only the resulting Fredholm integral
equation for the normalized bond traction N.

N(§)~J: K¢ nN(n)dn=R() (0=¢<a) (13)
where
E=-xilh, N(E)=hVa-Ep(-hé)lP,
and (14)

a = alh.

The Kernel K and the function R are

K m)= —\/(;—_"I—J' Vi(a— {)[5—{ 4—%][C‘—cz(i—n)2+F*(§—n)ld§,
L e L[ Via[+2-4] (1s)

X [§—+17+c1—62()\ +£)2+F*()~+§)] d¢
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where the constants ¢;, ¢, and the function F, are given by (8) and
A=lh (16)

As apparent from (4) and (12), the stress intensity factor K, at the loaded end is related to N (0) by
K[ = l}gl_ V —27Txl7'22(x1, 0) = PJZ_‘:IN(O) (17)

The numerical determination of the solution to the integral eqn (13) necessitates the
evaluation of the infinite integral F,(£) defined by (8). The evaluation of this quantity is greatly
expedited by the use of three expressions for A,(s) in the Appendix for small, intermediate and
large values of the argument. The integral equation is reduced to a system of algebraic equations
for the values of N(£) at a discrete number of mesh points. This reduction is achieved by
introducing a partition on the interval (0, a) which is relatively dense near the endpoints where N
is expected to vary sharply. The integral in (13) is evaluated by accounting for the square root
singularity exactly in the first and last intervals and using the trapezoidal rule over the remainder
of the region. Requiring that (13) be satisfied at each of the mesh points then leads to a system of
linear algebraic equations for N(¢).

3. NUMERICAL RESULTS AND DISCUSSION

We proceed now to the discussion of illustrative numerical examples. Figures 2 and 3 depict
the variation of the normalized bond stress

N(=x:/h) = V—=xi(x, + a)r8(x,, 0)/ P (18)

along the line of crack propagation. Because of the physical importance of the values of N in the
neighborhood of end of the bond line, the stress distributions near the point x,/h =0 are
presented on a magnified scale. In Fig. 2, N is plotted for various ratios of Young's modulus of
adherend to that of adhesive, while N is presented in Fig. 3 for several ratios of adherend
thickness to adhesive thickness. In both figures, the length of the bonded region, the point of load
application and Poisson’s ratio are a/h =4, I/h =1 and », = v, =0.25. In Fig. 2, the thickness
ratio is h./h =0.01 while moduli ratios employed are 2, 10, 20 and 60. These latter values
approximately correspond to adherends of wood, glass, aluminum and steel, respectively, if the
adhesive is an epoxy resin (Young’s modulus 500 ksi (3447 MPa)). Observe in Fig. 2 that both the
maximum values and values at x, =0 of the normalized bond stress decrease as the ratio of
elastic moduli increases. This observation confirms our intuitive feeling that a stiffer adherend
leads to a stronger joint for the same adhesive assuming the geometry and the loading pattern are
fixed. In Fig. 3 the values of 0.01, 0.02, 0.05 and 0.1 are used for the thickness ratio. It is
interesting to note that the thickness ratio has little effect upon the tip value of the normalized

______ g =2 «=ah =4
—p =10 A=th =1
s =20 € = hy/p= 0.01
— 5 =60 I ve= vy = 025
B = ExlEq
N(-xq/h) = \/-xqlatxq) o 795(x4,0)/P
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Fig. 2. Distribution of normalized bond stress for various values of 8.
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Fig. 3. Distribution of normalized bond stress for various values of e.

bond stress, while the values of N at other points exhibit a greater dependence upon this
parameter.

An elementary strength-of-material’s type argument suggests that the ratio of the stiffness of
the adherend to that of the adhesive might be the only parameter affecting the bond stress
distribution. This ratio [E./(h — h)Y/[E./h:] may be approximated closely by (E./E\)(h./h) since
h:/h is very small. Figure 4 displays the normalized bond stress distribution for three different
combinations of 8 = E,/E, and € = h./h all corresponding to a (E./h)/E:/h\) value of 40, i.e. the
same stiffness ratio. These three curves almost coalesce except near the loaded end where, the
values differ substantially.

We turn our attention to the singular stress field at the loaded end and introduce a
dimensionless stress intensity factor? «.

K. [h 1
k(a, A, €, 8)=— =—=N(0) (19)
U P Var Va
, 10
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Fig. 4. Distribution of normalized bond stress for various values of € and 8 such that af =04.

tNote that the standard mode 1 stress intensity factor is denoted by K,.
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where the arguments o« = a/h, A = I/h, € = h,/h and B = E,/E, are explicitly written in order to
emphasize the dependence upon these parameters.

We observe from Figs. 2 and 3 and similar results not presented here that N(—x./h) is very
small for x,/h <-2.5 indicating that the interval —a <x./h <-2.5 does not contribute
significantly to the load transfer between the two adherends. This observation indicates that
values of o beyond 4, say, will not seriously affect the value N(0). A previous investigation[2]
dealing with the same problem, but disregarding the presence of adhesive layer, has shown that
N(0) is virtually independent of « when « > 3. Therefore, the value o = 4 is used exclusively in
the numerical examples presented herein and the dependence of x on « is suppressed
anticipating that the conclusions reached hold for any value of « larger than 3.

The linear dependence of x on A =0.5 was observed in [2] for the particular case of
B = E»/E, = 1. The same linear dependence of x was numerically confirmed for a specific case
€ =0.01 and B =20. Based on these observations and Saint Venant’s principle, we assume that

k(a, A, €, B) = A(e, B)+ B(e, B)A
(a=3,1=205,¢6>0,8=1). (20)

The dependence of A and B on parameters ¢ and B is determined numerically and presented in
Fig. 5. The solid curves show the variations of A and B upon B for a fixed value of € =0.01.
Alternatively, the dashed curves in Fig. 5 show the dependence of A and B upon €' for a fixed
value of B = E,/E; = 20. The figure indicates that the effect of moduli ratio 8 = E»/E, upon A and
B is more pronounced than that of the thickness ratio € = h,/h.
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Fig. 5. Variation of functions A and B with € and .

Figure 6 presents the normalized intensity factor as a function of 8 and € for A =1, 2. In this
figure the solid lines are for a fixed thickness ratio e = 0.01 while 8 varies. The dashed curves in
Fig. 6 are for a fixed moduli ratio 8 = 20 (aluminum-epoxy) while € varies. Overall behavior of the
curves in Fig. 6 is similar to that in Fig. 5. In particular, the dimensionless stress intensity factor
decreases slightly as the thickness of adhesive layer decreases (8 fixed). If we recall that a
decrease in the stress intensity factor is equivalent to an increase of the rupture strength of the
joint, the conclusion reached here supports the experimental observations by Bryand and
Dukes[5] which indicate a slight decrease in joint strength with increasing adhesive thickness.
This is also in agreement with the rule established by many observations and experiments that “a
joint is stronger the thinner the adhesive layer in it”. Figure 6 also shows that the rate of decrease
in stress intensity factor (for a fixed combination of adherend and adhesive materials) due to a
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decrease of adhesive thickness is small for the entire e range considered (10< ™' = h/h, < 100).
In particular the intensity factor remains almost constant for h/h, > 60.

In this numerical work, Poisson’s ratios for the adherend and adhesive are assumed to be the
same and the dependence of stress intensity factor upon Young’'s moduli and geometrical
parameters is studied. If the stress intensity factor for an adhesive joint with a fixed geometrical
configuration is desired for all possible material combinations, the most convenient presentation
would be in terms of points in the a, B plane, [3, 6], since physically permissible combinations
of material constants lie in a finite region in this plane.

4. CONCLUDING REMARKS

It would be anticipated by the chemist that the adhesive joint strength increases as the bond
thickness decreases. The reason advanced is that the chemical bonding process (assuming clean
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surfaces) results in a boundary layer of material along the adherend-adhesive interface that is
stronger than that of either parent material. As the bond thickness decreases, a greater
percentage of the adhesive is made up of this “stronger” material and hence a higher strength
connection results.

The numerical results presented in the preceding section show that there is an alternative
explanation for this behavior. The dependence of the mechanical stress field upon the bond line
thickness is such that the connection strength must increase as the bond line thickness decreases
and this fact should be included with the surface chemistry argument.

The strain energy release rate, %, of the adhesive material in plane strain is related to the
stress intensity factor by

4 = ““T”)K Q1)

where v, E, are the material properties of the adhesive. It is possible to measure[1] the critical
value of % required to propagate a crack through the adhesive. Such experiments must
necessarily be conducted on specific adherend-adhesive systems and as such only give strength
values for the tested systems.

If one assumes that the basic material properties of the adhesive are independent of adherend
and adhesive thickness, then the results presented herein can be used to determine the true
adhesive strength, independent of the adherend-adhesive system used to measure it. Assuming
the test configuration is one that can be modeled by the geometry used herein, then knowledge of
the failure load permits the immediate evaluation of the critical value of K; required to grow the
crack. As the joint geometry and moduli ratio have been properly accounted for in the analysis,
the resulting strength value of the adhesive is independent of these factors.
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APPENDIX

In this appendix, the three alternative expressions of A,(s) suitabie for numerical evaluation for large, intermediate and
small values of s will be presented together with a brief explanation of their derivation. The function A.(s) is needed to
evaluate i, ,(x,,0) and, in turn, to solve the Fredholm integral equation for the normalized bond stress.

Exponential Fourier transform of Airy stress functions for 7.} and 7 that satisfy the boundary conditions assume the
following forms:

P25 = #{cosh (zx2) + A (h2){zx; cosh (zx,) — sinh (zx,))

V222
+Bi(hz)zx, sinh (zx,)} (0<x,<h,), (A1)
$(2, ) = Vz_lf?mz(hz)[z(xz ~ k) cosh (z(x: — k)~ sinth (z(x:— k)]

+ By(hz)z(x, — h) sinh (z(x,— h))} (hi<x,<h),

where z is the transform parameter.

The continuity conditions for displacements and tractions along the line x, = h, lead to a system of four linear algebraic
equations for A,, A,, B, and B.. In the following derivation of the expressions of A,(s) we utilize the fact that the parameter
€= h,/h is very small compared to unity.

Small values of s (0<s5=<0.1¢)
We expand A,, B, (y =1, 2) into power series of ¢, substitute these into the simultaneous equations and equate terms of
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equal power of e. In this manner we arrive at

. S U P s k sinh? (hs)
Al) sinh® s — §° [S+25mh(2s)] 25.\‘[(» (f(sHsinh’(hs)—s*)+sinh2s—s2f(s)]

2
+0(§—3> as s >0,e->0 (A2)

where k is given by (11) and

_ (k=1)sinh’s

f)=o+ g —o (A3)
6=2"Ps
a1

Large values of s (4 ' <5 <)

Recall first that a neighborhood of the point at infinity in the transformed domain (s-plane} corresponds to the
neighborhood of the origin in the physical x,x,-plane. We therefore consider a problem of an infinite slab bonded to a half
plane. This assembly is subjected to the boundary and regularity conditions:

72(x,,0)=~8(x)), #2(x,0)=0 (—°°<X.<°°),}

(Ad)
Fn=0(1) (y=12) as XX, —>%.

Note that the transform of the stress functions for the slab is still given by the first of (A1) and that for the half plane has a
simple form. After routine manipulation, one is led to

qi—dese?C +q e

Al(s)=ql+[1_qlq2+4(€s)z]e-zes —qzCA‘“
—2es
=1-[1-qga+des +4(es)2]eq +0(es)'e ™) as s, €0 (AS)
1
where
_ By~ _a,tBy
= , Ga= . (A6)
a8 TR

Intermediate values of s (0.1 ' <s <4e™")

Representation of A,(s) suitable for evaluation in this interval is obtained by use of two variable expansion
procedures[8]. The system of linear algebraic equations for A, A,, By, B; is rewritten in terms of the large variable s, a small
variable § = es and the small parameter ¢. These equations together with the two approximate representations of A,, A, B.,
B, for small and large values of s (those for A, Bi, B, are not presented here since they are not needed in the subsequent
analysis) suggest the expressions:

A(s)=a,(§)+0(e),
Bi(s)=b.,(5)+0e),

mm=§mmmm+mx (A7)
Bi(s)= Z ba(§)bi(s) + e).

Substitution of A,, B;, A,, B, from (A7) into the system of linear algebraic equations and subsequently equating the terms of
equal power of e yields

Au(s) = {{(1 - @)2k + &) + @] sinh (2§) + 2k cosh (25) — 2@(2k + @)§}/{2k sinh (25)
+[(1- @)(2k + @)+ &) cosh (25) + 23 (2k + @)+ &2+ 2k — 1)@ — 1)} + 0e) (A8)

where k and @ are given by (11) and (A3), respectively.

In Fig. 7 the solid curve represents A,(s) obtained by solving the original system of linear equations numerically while the
triangles, circles, and crosses are, in this order, the values evaluated from (A2), (A7) and (AS), respectively. The dashed curve
represents the portion of A, where some of the functions involved become too large for the computer to handle. The
percentage errors of approximate expressions in (A2), (AS) and (A7) were confirmed to be less than 0.1% for all the examples
treated numerically in this paper.



